Ecologists are fascinated by the prevalence of nestedness in biogeographic and community data, where it is thought to promote biodiversity in mutualistic systems. Traditionally, nestedness has been treated in a binary sense: species and their interactions are either present or absent, neglecting information on abundances and interaction frequencies. Extending nestedness to quantitative data facilitates the study of species preferences, and we propose a new detection method that follows from a basic property of bipartite networks: large dominant eigenvalues are associated with highly nested configurations. We show that complex ecological networks are binary nested, but quantitative preferences are non-nested, indicating limited consumer overlap of favoured resources. The spectral graph approach provides a formal link to local dynamical stability analysis, where we demonstrate that nested mutualistic structures are minimally stable. We conclude that, within the binary constraint of interaction plausibility, species preferences are partitioned to avoid competition, thereby benefiting system-wide resource allocation.