Young stems of Aerva javanica (Burm.f.) Juss. ex Schult., A. lanata (L.) Juss. ex Schult, A. monsonia Mart., A. sanguinolenta (L.) Blume, Alternanthera bettzickiana (Regel) G. Nicholson, A. philoxeroides (Mart.) Griseb., Gomphrena celosioides Mart., G. globosa L. and Telanthera ficoidea (L.) Moq., showed the renewal of small sectors of cambium by replacing with new segments. Therefore, the secondary phloem formed by earlier cambial segments form isolated islands of phloem enclosed within conjunctive tissues became embedded in the secondary xylem. As the stem grows older, complete ring of cambium is renewed; sometimes an anastomosing network of successive cambia may be seen due to the renewal of larger segments of the cambium. Renewal of the cambium takes place by repeated periclinal division in the parenchyma cells positioned outside to the phloem formed by the previous cambium. Functionally the cambium is bidirectional and exclusively composed of fusiform cambial cells. Differentiation of conducting elements of the secondary xylem and phloem remains restricted to the certain cambial cells while rest of the segments exclusively produce conjunctive cells. Accumulation of starch along with the presence of nuclei in the xylem fibers even after deposition of the secondary wall is consistent in all the species and it seems to be associated with the absence of rays in the secondary xylem and phloem of nine species from four genera. The significance of successive cambia, rayless xylem and nucleated xylem fibers were correlated with plant habit.