Evasion or subversion of host immune responses have been shown for a variety of microorganisms, and this might be the case for Trichophyton rubrum, the most common pathogenic fungus causing chronic dermatophytosis in humans. Keratinocytes, the main epidermal cells, have important roles as a first defense against microbial challenges in local immune reactions. Epidermal keratinocytes express several Toll-like receptors and produce host defense peptides, cytokines and chemokines in response to various stimuli. We analyzed the expression of Toll-Like receptor TLR2, TLR4, TLR6, and Human Beta Defensin (HBD)-1, HBD-2, Interleukin IL-1b and IL-8 production, when exposing primary keratinocyte cultures to T. rubrum. We observed changes in size and granularity of keratinocytes stimulated with either whole conidia or conidial homogenates compared to other treatments. Intact conidia decreased keratinocytes’ TLR2 and TLR6 expression without affecting that of TLR4, while conidial homogenates increased the expression of these three receptors. Interestingly, whole conidia decreased HBD-1 and HBD-2 production, whereas conidial homogenate increased it. No changes were observed in IL-1b and IL-8 production after stimulation with conidia or conidial homogenate. CONCLUSIONS. Our results suggest that: 1) Keratinocytes can recognize and respond to cell wall components of T. rubrum; 2) Viable intact conidia inhibit TLR-2 and TLR6 expression and decrease HBD-1 and HBD-2 production; 3) Conidial homogenate from T. rubrum increases the expression of TLR2, TLR4 and TLR6 and induces HBD-1 and HBD-2 production; 4) Therefore, innate immune functions of keratinocytes as the first level of local skin immunity are apparently manipulated by T. rubrum, likely to ensure its establishment, persistence and survival.