2020
DOI: 10.1007/s11676-020-01196-6
|View full text |Cite
|
Sign up to set email alerts
|

Stochastic frontiers or regression quantiles for estimating the self-thinning surface in higher dimensions?

Abstract: Stochastic frontier analysis and quantile regression are the two econometric approaches that have been commonly adopted in the determination of the self-thinning boundary line or surface in two and higher dimensions since their introduction to the field some 20 years ago. However, the rational for using one method over the other has, in most cases, not been clearly explained perhaps due to a lack of adequate appreciation of differences between the two approaches for delineating the self-thinning surface. Witho… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
6
0
8

Year Published

2022
2022
2024
2024

Publication Types

Select...
6

Relationship

1
5

Authors

Journals

citations
Cited by 13 publications
(14 citation statements)
references
References 72 publications
0
6
0
8
Order By: Relevance
“…Although quantile regression and stochastic frontier analysis can serve the same purpose of boundary delineation in applied statistics far beyond econometrics, an adequate appreciation of the differences between the two approaches is essential for researchers to select the best method to estimate the self‐thinning surface (Tian et al, 2020). The value of τ$$ \tau $$ chosen for estimating the self‐thinning line mainly ranges from 0.90 to 0.99 in the literature, with 0.95 ≤ τ$$ \tau $$ ≤ 0.99 being the most common choice (Andrews et al, 2018; Condés et al, 2017; Vospernik & Sterba, 2015).…”
Section: Discussionmentioning
confidence: 99%
See 1 more Smart Citation
“…Although quantile regression and stochastic frontier analysis can serve the same purpose of boundary delineation in applied statistics far beyond econometrics, an adequate appreciation of the differences between the two approaches is essential for researchers to select the best method to estimate the self‐thinning surface (Tian et al, 2020). The value of τ$$ \tau $$ chosen for estimating the self‐thinning line mainly ranges from 0.90 to 0.99 in the literature, with 0.95 ≤ τ$$ \tau $$ ≤ 0.99 being the most common choice (Andrews et al, 2018; Condés et al, 2017; Vospernik & Sterba, 2015).…”
Section: Discussionmentioning
confidence: 99%
“…Furthermore, stochastic frontier analysis may lead to a more objective self‐thinning line because it does not involve the subjective selection of a particular value of τ$$ \tau $$. However, quantile regression can still serve as a valuable complement to stochastic frontier analysis in the estimation of the self‐thinning surface, as it allows the impact of variables other than stand density on different quantiles to be examined (Tian et al, 2020).…”
Section: Discussionmentioning
confidence: 99%
“…(2) es un componente del error asociado con la medición de las observaciones individuales, se asume como una perturbación simétrica distribuida independientemente de , recoge las variaciones aleatorias debidas a factores como errores aleatorios, errores en la observación y de medición de los datos, se distribuye como =iid N(0, σ 2 v) (Bi, 2004;Comeau et al, 2010;Salas-Eljatib y Weiskittel, 2018;Tian et al, 2021;Long et al, 2022). (AIC) y criterio de Schwarz (SchC), además de las varianzas de los componentes del error (σ 2 v y σ 2 u), la razón de varianzas de los componentes del error (λ) y la varianza total (σ 2 ) (Bi, 2004;Comeau et al, 2010).…”
Section: Materiales Y Métodosunclassified
“…El propósito de realizar contrastes más objetivos es definir un proceso metodológico preciso y eficiente, tanto para determinar la línea de autoaclareo como para la construcción de GMD (Zhang et al, 2005;VanderSchaaf y Burkhart, 2007; Salas-Eljatib y Weiskittel, 2018;Marchi, 2019;Tian et al, 2021), así como para disponer de estrategias alternativas con eficiencia similar.…”
unclassified
See 1 more Smart Citation