SummaryThe current model for pathogenesis of inhalation anthrax indicates that the uptake and fate of Bacillus anthracis spores in alveolar macrophages are critical to the infection process. We have employed primary macrophages, which are more efficient for spore uptake than the macrophage-like cell line RAW264.7, to investigate spore uptake and survival. We found that at a multiplicity of infection (moi) of 5, greater than 80% of the spores of the Sterne strain containing only the pXO1 plasmid were internalized within 1 h. Within 4 h post infection, viability of internalized Sterne spores decreased to approximately 40%. Intracellular vegetative bacteria represented less than 1% of the total spore inoculum throughout the course of infection suggesting effective killing of germinated spores and/or vegetative bacteria. The Sterne spores trafficked quickly to phagolysosomes as indicated by colocalization with lysosome-associated membrane protein 1 (LAMP1). Expression of a dominant-negative Rab7 that blocked lysosome fusion enhanced Sterne spore survival. Addition of D -alanine to the infection resulted in 75% inhibition of spore germination and increased survival of internalized spores of the Sterne strain and a pathogenic strain containing both the pXO1 and pXO2 plasmids. Inhibition was reversed by the addition of L -alanine, which resumed spore germination and subsequent spore killing. Our data indicate that B. anthracis spores germinate in and are subsequently killed by primary macrophages.
Toxoplasma gondii is an obligate intracellular protozoan parasite, which causes various diseases including lymphadenitis, congenital infection of fetuses and life-threatening toxoplasmic encephalitis in immunocompromised individuals. Interferon-gamma (IFN-γ)-mediated immune responses are essential for controlling tachyzoite proliferation during both acute acquired infection and reactivation of infection in the brain. Both CD4+ and CD8+ T cells produce this cytokine in response to infection. Murine models demonstrated that both CD4+ and CD8+ T cells are protective against reactivation of infection, although the latter have more potent protective activity. Various signaling molecules including MyD88, protein kinase C-theta, and nuclear factor-κB family transcription factors are important for T cells in inducing and/or maintaining their protective function. IL-12, IL-4, IL-6, IL-10, IL-17, IL-27, and IL-33 are involved in regulating resistance to T. gondii in the brain. IFN-γ can activate microglia, astrocytes, and macrophages and these activated cells control proliferation of tachyzoites using different molecules depending on the cell types and species of the host. IFN-γ also plays a critical role in recruitment of T cells into the brain after infection by inducing expression of adhesion molecule, VCAM-1, on cerebrovascular endothelial cells and of chemokines such as CXCL9, CXCL10 and CCL5. A recent study revealed that CD8+ T cells are able to remove T. gondii cysts, the stage of the parasite in chronic infection, from the brain through their perforin-mediated activity. Thus, the resistance to cerebral infection with T. gondii requires a coordinated network utilizing both IFN-γ- and perforin-mediated immune responses. Elucidating how these two protective mechanisms function and collaborate in the brain against T. gondii will be crucial in developing a new method to prevent and eradicate this parasitic infection.
We created and tested multi-epitope DNA or protein vaccines with TLR4 ligand emulsion adjuvant (gluco glucopyranosyl lipid adjuvant in a stable emulsion [GLA-SE]) for their ability to protect against Toxoplasma gondii in HLA transgenic mice. Our constructs each included 5 of our best down-selected CD8(+) T cell-eliciting epitopes, a universal CD4(+) helper T lymphocyte epitope (PADRE), and a secretory signal, all arranged for optimal MHC-I presentation. Their capacity to elicit immune and protective responses was studied using immunization of HLA-A*11:01 transgenic mice. These multi-epitope vaccines increased memory CD8(+) T cells that produced IFN-γ and protected mice against parasite burden when challenged with T. gondii. Endocytosis of emulsion-trapped protein and cross presentation of the antigens must account for the immunogenicity of our adjuvanted protein. Thus, our work creates an adjuvanted platform assembly of peptides resulting in cross presentation of CD8(+) T cell-eliciting epitopes in a vaccine that prevents toxoplasmosis
T cells are required to maintain the latency of chronic infection with Toxoplasma gondii in the brain. Here, we examined the role of non-glutamic acid-leucine-arginine CXC chemokine CXCL9 for T-cell recruitment to prevent reactivation of infection with T. gondii. Severe combined immunodeficient (SCID) mice were infected and treated with sulfadiazine to establish a chronic infection. Immune T cells from infected wild-type mice were transferred into the SCID mice in combination with treatment with anti-CXCL9 or control sera. Three days later, sulfadiazine was discontinued to initiate reactivation of infection. Numbers of CD4(+) and CD8(+) T cells isolated from the brains were markedly less in mice treated with anti-CXCL9 serum than in mice treated with control serum at 3 days after sulfadiazine discontinuation. Amounts of tachyzoite (acute stage form of T. gondii)-specific SAG1 mRNA and numbers of foci associated with tachyzoites were significantly greater in the former than the latter at 5 days after sulfadiazine discontinuation. An accumulation of CD3(+) T cells into the areas of tachyzoite growth was significantly less frequent in the SCID mice treated with anti-CXCL9 serum than in mice treated with control serum. These results indicate that CXCL9 is crucial for recruiting immune T cells into the brain and inducing an accumulation of the T cells into the areas where tachyzoites proliferate to prevent reactivation of chronic T. gondii infection.
In vitro studies demonstrated that microglia and astrocytes produce IFN-γ in response to various stimulations including LPS. However, the physiological role of IFN-γ production by brain-resident cells including glial cells in resistance against cerebral infections remains unknown. We analyzed the role of IFN-γ production by brain-resident cells in resistance to reactivation of cerebral infection with Toxoplasma gondii using a murine model. Our study using bone marrow chimeric mice revealed that IFN-γ production by brain-resident cells is essential for upregulating IFN-γ-mediated protective innate immune responses to restrict cerebral T. gondii growth. Studies using a transgenic strain that expresses IFN-γ only in CD11b+ cells suggested that IFN-γ production by microglia, which is the only CD11b+ cell population among brain-resident cells, is able to suppress the parasite growth. Furthermore, IFN-γ produced by brain-resident cells is pivotal for recruiting T cells into the brain to control the infection. These results indicate that IFN-γ produced by brain-resident cells is crucial for facilitating both the protective innate and T cell-mediated immune responses to control cerebral infection with T. gondii.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.