Evolution has sculpted the incredibly complex human nervous system, among the most complex functions of which extend beyond the individual to an intricate social structure. Although these functions are deterministic, those determinants are legion, heavily interacting and dependent on a specific evolutionary trajectory. That trajectory was directed by the adaptive significance of quasi-random genetic variations, but was also influenced by chance and caprice. With a different evolutionary pathway, the same neural elements could subserve functions distinctly different from what they do in extant human brains. Consequently, the properties of higher level neural networks cannot be derived readily from the properties of the lower level constituent elements, without studying these elements in the aggregate. Thus, a multi-level approach to integrative neuroscience may offer an optimal strategy. Moreover, the process of calibrative reductionism, by which concepts and understandings from one level of organization or analysis can mutually inform and 'calibrate' those from other levels (both higher and lower), may represent a viable approach to the application of reductionism in science. This is especially relevant in social neuroscience, where the basic subject matter of interest is defined by interacting organisms across diverse environments.