The concept of mechanism is analyzed in terms of entities and activities, organized such that they are productive of regular changes. Examples show how mechanisms work in neurobiology and molecular biology. Thinking in terms of mechanisms provides a new framework for addressing many traditional philosophical issues: causality, laws, explanation, reduction, and scientific change. 1. Introduction. In many fields of science what is taken to be a satisfactory explanation requires providing a description of a mechanism. So it is not *
This paper analyzes the generation and function of hitherto ignored or misrepresented interfield theories, theories which bridge two fields of science. Interfield theories are likely to be generated when two fields share an interest in explaining different aspects of the same phenomenon and when background knowledge already exists relating the two fields. The interfield theory functions to provide a solution to a characteristic type of theoretical problem: how are the relations between fields to be explained? In solving this problem, the interfield theory may provide answers to questions which arise in one field but cannot be answered within it alone, may focus attention on domain items not previously considered important, and may predict new domain items for one or both fields. Implications of this analysis for the problems of reduction and the unity and progress of science are mentioned.
Discovery proceeds in stages of construction, evaluation, and revision. Each of these stages is constrained by what is known or conjectured about what is being discovered. A new characterization of mechanism aids in specifying what is to be discovered when a mechanism is sought. Guidance in discovering mechanisms may be provided by the reasoning strategies of schema instantiation, modular subassembly, and forward/backward chaining. Examples are found in mechanisms in molecular biology, biochemistry, immunology, and evolutionary biology.
Reasoning in Biological Discoveries brings together a series of essays, which focus on one of the most heavily debated topics of scientific discovery. Collected together and richly illustrated, Darden's essays represent a groundbreaking foray into one of the major problems facing scientists and philosophers of science. Divided into three sections, the essays focus on broad themes, notably historical and philosophical issues at play in discussions of biological mechanism; and the problem of developing and refining reasoning strategies, including interfield relations and anomaly resolution. Darden summarizes the philosophy of discovery and elaborates on the role that mechanisms play in biological discovery. Throughout the book, she uses historical case studies to extract advisory reasoning strategies for discovery. Examples in genetics, molecular biology, biochemistry, immunology, neuroscience and evolutionary biology reveal the process of discovery in action.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.