High capacity electrode materials are searched for commercial applications due to the increase in energy density and power density requirements for lithium-ion secondary cells. Silicon has triggered significant research effort because of its low Li-uptake potential and the high theoretical capacity. However, volume changes during cycling cause pulverization and capacity fade, which is an obstacle of the application of silicon as an anode. Here we present a review of research progress on silicon-based anode materials for lithium-ion batteries, focusing on the effects of the morphology and compound on the electrochemical properties. The reasons of poor cycle performance are discussed. It is pointed out that to control the huge volume change and solid electrolyte interface growth during cycling is an effective way to improve the cycle performance. Outlook for the future development of silicon-based composite anode materials for the application of silicon anodes are finally outlined.