Ab initio frozen-phonon calculations have been performed for k = 0 A g Raman modes of two superconducting systems Y123 and Y124. We have used the local density approximation pseudopotential method in our calculations by VASP code. Results have been compared with other computational and experimental data for similar systems. Then we present changes of electronic band structure with the change of ionic positions in each A g mode for both systems. [3] studies indicate that the electronphonon interaction has an important role in the mechanism of superconductivity of cuprate oxide high temperature superconductors (HTSCs) while early belief was the most importance of the electronelectron interaction [4,5]. Photoemission experiments [1] show a large kink in the hole dispersion at about 70 meV binding energy, suggesting a strong coupling of holes with a bosonic mode with 70 meV energy. A computational study in the t-J model indicates that the strong distance dependence of the hopping and Coulomb integrals results in a strong electron-phonon coupling and explains the softening of half-breathing phonon mode [6]. Some computational studies indicate that the renormalization of electron-phonon interaction by the electronic correlations could explain the anomalous behavior of different transport experiments and introduce a large coupling constant for producing high superconducting transition temperature [7].To clear the relative importance of electron phonon interaction in HTSCs, we have investigated the effect of A g Raman modes on the electronic band structure (EBS). In this study, we have calculated the eigenvalues and eigenvectors of A g Raman modes of YBa 2 Cu 3 O 7 (Y123) and YBa 2 Cu 4 O 8 (Y124) systems based on density functional theory in the local density approximation (LDA). This is a conventional approach to calculate structural and vibrational properties of HTSCs, even in the strong correlation regime where EBS calculations have some overestimations [8]. Then, the results of EBS calculation in each bare mode and their coupling with each mode have been explained.