Although imine reductases (IREDs) are emerging as attractive reductive aminases (RedAms), their substrate scope is still narrow, and rational engineering is rare. Focusing on hydrogen bond reorganization and cavity expansion, a concise strategy combining rational cavity design, combinatorial active‐site saturation test (CAST), and thermostability engineering was designed, that transformed the weakly active IR‐G36 into a variant M5 with superior performance for the synthesis of (R)‐3‐benzylamino‐1‐Boc‐piperidine, with a 4193‐fold improvement in catalytic efficiency, a 16.2 °C improvement in Tm, and a significant increase in the e.e. value from 78 % (R) to >99 % (R). M5 exhibits broad substrate scope for the synthesis of diverse azacycloalkylamines, and the reaction was demonstrated on a hectogram‐scale under industrially relevant conditions. Our study provides a compelling example of the preparation of versatile and efficient IREDs, with exciting opportunities in medicinal and process chemistry as well as synthetic biology.