Efficient and selective molecular syntheses are paramount to inter alia biomolecular chemistry and material sciences as well as for practitioners in chemical, agrochemical, and pharmaceutical industries. Organic electrosynthesis has undergone a considerable renaissance and has thus in recent years emerged as an increasingly viable platform for the sustainable molecular assembly. In stark contrast to early strategies by innate reactivity, electrochemistry was recently merged with modern concepts of organic synthesis, such as transition-metal-catalyzed transformations for inter alia C–H functionalization and asymmetric catalysis. Herein, we highlight the unique potential of organic electrosynthesis for sustainable synthesis and catalysis, showcasing key aspects of exceptional selectivities, the synergism with photocatalysis, or dual electrocatalysis, and novel mechanisms in metallaelectrocatalysis until February of 2021.
Electrochemical cobalt-catalyzed C-H functionalizations were achieved in terms of C-H oxygenation under mild conditions at 23 °C. The robust electrochemical C-H functionalization was characterized by ample substrate scope, whereas mechanistic studies provided support for a facile C-H cleavage. The electrochemical cobalt-catalyzed C-H oxygenation proved viable on arenes and alkenes with excellent levels of positional and diastereo-selectivity, avoiding the use of stoichiometric silver(I) oxidants under ambient conditions.
C–H activation has emerged as a transformative tool in molecular synthesis, but until recently oxidative C–H activations have largely involved the use of stoichiometric amounts of expensive and toxic metal oxidants, compromising the overall sustainable nature of C–H activation chemistry. In sharp contrast, electrochemical C–H activation has been identified as a more efficient strategy that exploits storable electricity in place of byproduct-generating chemical reagents. Thus, transition-metal catalysts were shown to enable versatile C–H activation reactions in a sustainable manner. While palladium catalysis set the stage for C(sp2)–H and C(sp3)–H functionalizations by N-containing directing groups, rhodium and ruthenium catalysts allowed the use of weakly coordinating amides and acids. In contrast to these precious 4d transition metals, the recent year has witnessed the emergence of versatile cobalt catalysts for C–H oxygenations, C–H nitrogenations, and C–C-forming [4+2] alkyne annulations. Thereby, the use of toxic and expensive silver(I) oxidants was prevented, improving the environmentally benign nature of C–H activation catalysis. Herein, we summarize the recent major advances in organometallic activations of otherwise inert C–H bonds by electrocatalysis through May 2018.
The full control of redox events is of utmost importance to key aspects of molecular synthesis. As a consequence, chemists have recognized the power of electrochemistry for more than a century to govern electron movements for chemical transformations. Despite numerous benefits associated with electrosynthesis, electrical-current-enabled organic transformations have remained for decades largely dormant in academia and industry. However, organic electrosynthesis has recently experienced a considerable renaissance in terms of implementing electrochemical strategies in the synthetic arsenal. To illustrate this unique potential, we have selected four recent representative examples of contemporary organic electrosynthesis that have attracted major attention toward a toolbox for sustainable synthetic chemists.
Electrochemistry enabled C-H/N-H functionalizations at room temperature by external oxidant-free cobalt catalysis. Thus, the sustainable cobalt electrocatalysis manifold proceeds with excellent levels of chemoselectivity and positional selectivity, and with ample scope, thus allowing electrochemical C-H activation under exceedingly mild reaction conditions at room temperature in water.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.