1994
DOI: 10.1109/61.296272
|View full text |Cite
|
Sign up to set email alerts
|

Structural failure analysis of 345 kV transmission line

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
6
0
1

Year Published

2013
2013
2023
2023

Publication Types

Select...
9
1

Relationship

0
10

Authors

Journals

citations
Cited by 19 publications
(7 citation statements)
references
References 1 publication
0
6
0
1
Order By: Relevance
“…• Beban Mati Merupakan parameter yang digunakan sebagai beban tower itu sendiri yang berupa beban konstruksi serta material pendukungnya [13]. Dapat diklasifikasikan menjadi tiga bagian [14], yaitu Vertical Load (beban struktur pendukung, beban konduktor, fitting, insulator dan aksesorisnya); Horizontal Transverse Load (beban tekanan angin ke struktur tower dan struktur pendukung); dan Horizontal Longitudinal Load (beban tekanan angin secara melintang).…”
Section: Desain Tower Transmisi Plnunclassified
“…• Beban Mati Merupakan parameter yang digunakan sebagai beban tower itu sendiri yang berupa beban konstruksi serta material pendukungnya [13]. Dapat diklasifikasikan menjadi tiga bagian [14], yaitu Vertical Load (beban struktur pendukung, beban konduktor, fitting, insulator dan aksesorisnya); Horizontal Transverse Load (beban tekanan angin ke struktur tower dan struktur pendukung); dan Horizontal Longitudinal Load (beban tekanan angin secara melintang).…”
Section: Desain Tower Transmisi Plnunclassified
“…Other significant ice storms that affected power systems in recent decades include the 1990 Iowa storm, which damaged several power transmission structures [7], the 1998 ice storm in southern Quebec and northern New York, and the 2013 North American ice storm that also affected Canada and Northeastern United States (US) and caused extended outages and significant economic losses [8]. In particular, the 1998 ice storm in Canada caused about $3 billion in damage and left millions of customers without power -some for TABLE 2.…”
Section: Figurementioning
confidence: 99%
“…For example, the response of stranded cables to exciting forces produced by wind is studied and details of an analytical and experimental study of self‐damping cable are presented in [1]; cables with different characteristics are simulated and tested at transverse wind incidence, the results of which confirm the importance of turbulence in the dynamic response and demonstrate that the aerodynamic damping plays an important role in the dynamic behaviour of the cables [2]. Gupta et al [3] quantify potential load leading to different failure possibilities during an ice storm; Jianwei and Lilien [4] put forward a full multi‐span iced transmission line model with three degrees of freedom, which is applicable for describing the galloping phenomena of both single and bundled lines and so on. A rational analytical method for determining dynamic response of wind‐excited large truss towers installed with friction dampers is presented and the effectiveness of friction dampers is investigated in [5]; extreme wind statistics are used to evaluate the clearance requirements in order to perform a specific tower design in [6].…”
Section: Introductionmentioning
confidence: 99%