Efficient diagnosis procedures are crucial both for volume and for in-field diagnosis. In either case the underlying test strategy should provide a high coverage of realistic fault mechanisms and support a lowcost implementation. Built-in self-diagnosis (BISD) is a promising solution, if the diagnosis procedure is fully in line with the test flow. However, most known BISD schemes require multiple test runs or modifications of the standard scan-based test infrastructure. Some recent schemes circumvent these problems, but they focus on deterministic patterns to limit the storage requirements for diagnostic data. Thus, they cannot exploit the benefits of a mixed-mode test such as high coverage of non-target faults and reduced test data storage. This paper proposes a BISD scheme using mixed-mode patterns and partitioning the test sequence into "weak" and "strong" diagnostic windows, which are treated differently during diagnosis. As the experimental results show, this improves the coverage of non-target faults and enhances the diagnostic resolution compared to state-of-the-art approaches. At the same time the overall storage overhead for input and response data is considerably reduced.
Preprint
General Copyright NoticeThis article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden. This is the author's "personal copy" of the final, accepted version of the paper published by IEEE. Abstract-Efficient diagnosis procedures are crucial both for volume and for in-field diagnosis. In either case the underlying test strategy should provide a high coverage of realistic fault mechanisms and support a low-cost implementation. Built-in self-diagnosis (BISD) is a promising solution, if the diagnosis procedure is fully in line with the test flow. However, most known BISD schemes require multiple test runs or modifications of the standard scan-based test infrastructure. Some recent schemes circumvent these problems, but they focus on deterministic patterns to limit the storage requirements for diagnostic data. Thus, they cannot exploit the benefits of a mixed-mode test such as high coverage of non-target faults and reduced test data storage. This paper proposes a BISD scheme using mixed-mode patterns and partitioning the test sequence into "weak" and "strong" diagnostic windows, which are treated differently during diagnosis. As the experimental results show, this improves the coverage of non-target faults and enhances the diagnostic resolution compared to state-of-the-art approaches. At the same time the overall storage overhead for input and response data is considerably reduced.