Functionally graded Hydroxyapatite coating with graded Crystallinity across the thickness of the film has been processed and tested as a more effective orthopedic/ dental implant coating. The present study aims to increase the service-life of an orthopedic/ dental implant by creating materials that form a strong, long lasting, bond with the Ti substrate as well as juxtaposed bone. The health relatedness of the new material is to increase bonding between an implant and juxtaposed bone so that a patient who has received joint or dental replacement surgery may quickly return to a normal active lifestyle. Cross-sectional transmission electron microscopy analysis displayed that the films have a graded crystal structure with the crystalline layer near the substrate and the amorphous layer at the top surface. Compositional analysis was performed using SEM-EDX at the top surface as well as STEM-EDX at the cross section of the film. The average calcium to phosphorous ratio at the surface is 1.46, obtained by SEM-EDX, The Ca/P ratios in the crystalline and amorphous layers of the film are 1.6 to 1.7, close to the ratio of 1.67 for HA.
INTRODUCTIONIn order to improve the bioactivity of metal implants, Hydroxyapatite (HA: CaJ0(P0 4 )