We use density functional theory calculations to explore the effects of alloying cubic TiN and VN with transition metals M = Nb, Ta, Mo, W in 50% concentrations. The obtained ternaries are predicted to become supertough as they are shown to be harder and significantly more ductile compared to the reference binaries. The primary electronic mechanism of this supertoughening effect is shown in a comprehensive electronic structure analysis of these compounds to be the increased valence electron concentration intrinsic to these ternaries. Our investigations reveal the complex nature of chemical bonding in these compounds, which ultimately explains the observed selective response to stress. The findings presented in this paper thus offer a design route for the synthesis of supertough transition metal nitride alloys via valence electron concentration tuning.