2005
DOI: 10.1007/s11005-005-0026-6
|View full text |Cite
|
Sign up to set email alerts
|

Structures of G(2) Type and Nonintegrable Distributions in Characteristic p

Abstract: ABSTRACT. Lately we observe: (1) an upsurge of interest (in particular, triggered by a paper by Atiyah and Witten) to manifolds with G(2)-type structure; (2) classifications are obtained of simple (finite dimensional and graded vectorial) Lie superalgebras over fields of complex and real numbers and of simple finite dimensional Lie algebras over algebraically closed fields of characteristic p greater than 3; (3) importance of nonintegrable distributions in observations (1) and (2).We add to interrelation of (1… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

0
43
0
13

Year Published

2006
2006
2018
2018

Publication Types

Select...
6

Relationship

0
6

Authors

Journals

citations
Cited by 23 publications
(56 citation statements)
references
References 29 publications
0
43
0
13
Order By: Relevance
“…For p < 5, the above KSh-procedure and Melikyan's examples do not produce all simple finite-dimensional Lie algebras; there appear other examples and several old ones disappear. In [13], we returned tó E. Cartan's description of Z-graded Lie algebras as subalgebras of vectorial Lie algebras preserving certain nonintegrable distributions; we thus interpreted the "mysterious" exceptional examples of simple Lie algebras for p = 3 (the Brown, Frank, Ermolaev and Skryabin algebras), further elucidated Kuznetsov's interpretation [16] of Melikyan's algebras (as prolongs of the nonpositive part of the exceptional Lie algebra g(2) in one of its Z-gradings) and discovered three new series of simple Lie algebras. In [1], the same approach yielded bj, a simple super version of g(2), and Bj(1; N |7), a simple super version of the Melikyan algebra.…”
Section: The Ksh-methodmentioning
confidence: 99%
See 2 more Smart Citations
“…For p < 5, the above KSh-procedure and Melikyan's examples do not produce all simple finite-dimensional Lie algebras; there appear other examples and several old ones disappear. In [13], we returned tó E. Cartan's description of Z-graded Lie algebras as subalgebras of vectorial Lie algebras preserving certain nonintegrable distributions; we thus interpreted the "mysterious" exceptional examples of simple Lie algebras for p = 3 (the Brown, Frank, Ermolaev and Skryabin algebras), further elucidated Kuznetsov's interpretation [16] of Melikyan's algebras (as prolongs of the nonpositive part of the exceptional Lie algebra g(2) in one of its Z-gradings) and discovered three new series of simple Lie algebras. In [1], the same approach yielded bj, a simple super version of g(2), and Bj(1; N |7), a simple super version of the Melikyan algebra.…”
Section: The Ksh-methodmentioning
confidence: 99%
“…We use the standard notation of [10] and [22]; for the precise definition (algorithm) of Cartan-Tanaka-Shchepochkina (CTS) complete and partial prolongations, see [21]. Let mg(A) denote the realization of the Lie (super)algebra g(A) with the help of the mth Cartan matrix A; for their numbering and list, see [13], [2], and [3]. The grading deg e ± i = ±s i of Chevalley generators of g(A) is said to be simplest if all but one coordinates of the vector s = (s 1 , .…”
Section: Exceptional Lie Superalgebrasmentioning
confidence: 99%
See 1 more Smart Citation
“…Немного раньше Кос-трикина, используя явное описание 3-параметрического семейства T( , , ) неприво-димых 3-мерных sl(2)-модулей в характеристике 3, полученное Рудаковым и Шафа-ревичем [11], Рудаков построил картановское продолжение 2 ( , , ) := (T( , , ), gl(2)) * , являющееся Z-градуированным 3-параметрическим семейством деформаций алгеб-ры Ли o(5) (в [9] конструкция Рудакова упомянута). Эта конструкция прозрачна, а явные формулы описаны в [13]: а именно,…”
Section: Introductionunclassified
“…Отметим, что Грозман и Лейтес [13] нашли исключительные значения параметров ( , , ), при которых картановское продолжение…”
Section: Introductionunclassified