Atomic layer deposition (ALD) has been successfully utilized for the conformal and uniform deposition of ultrathin titanium dioxide (TiO2) films on high‐density polyethylene (HDPE) particles. The deposition was carried out by alternating reactions of titanium tetraisopropoxide and H2O2 (50 wt% in H2O) at 77°C in a fluidized bed reactor. X‐ray photoelectron spectroscopy confirmed the deposition of TiO2 and scanning transmission electron microscopy showed the conformal TiO2 films deposited on polymer particle surfaces. The TiO2 ALD process yielded a growth rate of 0.15 nm/cycle at 77°C. The results of inductively coupled plasma atomic emission spectroscopy suggested that there was a nucleation period, which showed the reaction mechanism of TiO2 ALD on HDPE particles without chemical functional groups. TiO2 ALD films deposited at such a low temperature had an amorphous structure and showed a much weaker photoactivity intensity than common pigment‐grade anatase TiO2 particles.