In faba bean, field based winter-hardiness is a complex trait that is significantly correlated to frost tolerance. Frost tolerance could be used to indirectly select for faba bean winter-hardiness. The aim of this study was to identify putative QTL associated with frost tolerance and auxiliary traits and to quantify the efficiency of marker assisted selection. Thus, 101 recombinant inbred lines derived from the cross between two frost tolerant lines were tested for their hardened and unhardened frost tolerance and for their leaf fatty acid content in both treatments. Significant differences among the RIL were observed for all studied traits. For frost tolerance, five putative QTL were detected; three for unhardened frost tolerance that explained 40.7% (8.6% after crossvalidation, CV) of its genotypic variance and two for hardened frost tolerance that explained 21.8% (1.0% after CV). For fatty acid content, three QTL were detected for oleic acid content in unhardened leaves that explained 62.9% (40.6% after CV) of its genotypic variance. This fatty acid was significantly correlated with unhardened frost tolerance. The unbiased genotypic variance explained enabled to draw realistic prospects of MAS for frost tolerance. In this study, combined MAS was more efficient than classical phenotypic selection and was expected to be higher on larger populations at early generations. Moreover, favourable alleles inherited from the exotic line BPL 4628 could be introgressed to European winter-hardy beans for further improvement.