Ground source heat pumps (GSHPs), a high-efficiency and energy-saving air-conditioning technology that utilizes shallow geothermal resources for both heating and cooling, are a vital green energy system for residential and commercial buildings. Improving the performance of such a system was the focus of the current research. As soil temperature and thermal radius are two important aspects that affect the performance of ground source heat pump systems, we conducted a new numerical simulation to capture the changes in sensitive factors and propose the optimized paths. The numerical simulation analyzed the thermal characteristics of a borefield under different pre-cooling times and soil types. The results indicated the following: (1) The rate of the ground temperature change with pre-cooling during the discharging period had a faster rise than in the case without pre-cooling. The longer the precooling time was, the smaller the thermal radius became. In particular, when the precooling time was longer than 14 days, the decrease in the thermal radius rate percentages was less than 4%. (2) Among the three kinds of soils compared, the soils with lower thermal conductivity and thermal diffusivity best suppressed the thermal interference effects. (3) Using a multivariate nonlinear function regression model, a simulation formula was proposed to predict- the thermal radius, which considered the factors of thermal diffusivity, precooling time, and discharging time. The prediction deviation was within 14.8%.