Micro-hole fabrication at a high speed and accuracy of machining while maintaining high surface quality is challenging. A core difficulty is the removal of the products of machining from extremely narrow gaps. To solve this problem, this study proposes an approach that combines high-speed electrical discharge machining (EDM) with electrochemical machining (ECM) by using a helical tube electrode with matched internal and external flushing. During high-speed electrical discharge drilling, matching the internal flushing with the clockwise rotation of the helical electrode can help remove debris from the bottom of the blind hole. During ECM, matching the external flushing with the anticlockwise rotation of the helical electrode can improve the flow of electrolyte in the gap. First, the flow field was simulated to show that matching the internal and external flushing of the helical electrode can enhance the flow of the medium and reduce particle concentration in extremely narrow gaps. Second, a series of experiments were conducted to verify that the taper of the hole and the surface quality of its wall can be improved by using the helical tube electrode. Finally, an experiment was carried out to optimize the machining parameters, and yielded a minimum taper of 0.008 at a speed of rotation of 460 rpm, and pressures of internal and external flushing of 9 MPa and 4 MPa, respectively.