The Gravity Recovery and Climate Experiment (GRACE) satellite solutions have been considerably applied to assess the reliability of hydrological models on a global scale. However, no single hydrological model can be suitable for all regions. Here, a New Statistical Correction Hydrological Model Weighting (NSCHMW) method is developed based on the root mean square error and correlation coefficient between hydrological models and GRACE mass concentration (mascon) data. The NSCHMW method can highlight the advantages of good models compared with the previous average method. Additionally, to verify the effect of the NSCHMW method, taking the Haihe River Basin (HRB) as an example, the spatiotemporal patterns of Terrestrial Water Storage Anomalies (TWSA) in HRB are analyzed through a comprehensive comparison of decadal trends (2003–2014) from GRACE and different hydrological models (Noah from GLDAS-2.1, VIC from GLDAS-2.1, CLSM from GLDAS-2.1, CLSM from GLDAS-2.0, WGHM, PCR-GLOBWB, and CLM-4.5). Besides, the NSCHMW method is applied to estimate TWSA trends in the HRB. Results demonstrate that (1) the NSCHMW method can improve the accuracy of TWSA estimation by hydrological models; (2) the TWSA trends continue to decrease through the study period at a rate of 15.7 mm/year; (3) the WGHM and PCR-GLOBWB have positive reliability with respect to GRACE with r > 0.9, while all the other models underestimate TWSA trends; (4) the NSCHMW method can effectively improve RMSE, NES, and r with 3–96%, 35–282%, 1–255%, respectively, by weighting the WGHM and PCR-GLOBWB. Indeed, groundwater depletion in HRB also proves the necessity of the South-North Water Diversion Project, which has already contributed to groundwater recovery.