Ocean Drilling Program Leg 141 drilling recovered an extensive suite of Pliocene to Pleistocene forearc basin deposits within the Chile margin near latitude 46°S, in the vicinity of the Chile spreading ridge-trench collision. The outer margin setting is dominated by terrigenous siliciclastic sediment input from the Andean volcanic arc, Paleozoic to Mesozoic crustal sources, and the forearc, in slightly varying proportions. The overall controls on sedimentation are complex; of major importance are fluctuations in glaciation, sea-level changes, volcanism, and tectonism (i.e., thrust faulting and uplift due to subduction accretion or subsidence due to subduction erosion).The sediments encountered are predominantly structureless muds, massive to graded sand, sandstones, and some gravels and conglomerates that were deposited from slope failures, turbidity currents, and suspension processes associated with hemipelagic fallout in basin plain/trench to stacked slope apron environments. During the late Pliocene to Pleistocene, fluctuations of the ice sheet also influenced the outer margin sedimentation; during the glacial maxima in the Pliocene and early Pleistocene, larger quantities of terrigenous sediment were transported to the trench slope by turbidity currents and related gravity flows. Tectonically induced accretion led to overall shallowing-up successions and the formation of small slope basins with a slight coarsening-upward general character in the upper portions of proximal sites. Onshore, uplifted and eroded Paleozoic metasedimentary rocks and deeper crustal complexes shed sediments of dissected arc provenance into the forearc region. Forearc sediment composition indicates a waning of the arc volcanism during the Pliocene-Pleistocene and an emplacement of subaqueous near-trench volcanism during Pliocene along the Taitao Fracture Zone, owing to the progressive spreading-ridge subduction along the Chile margin. Basinal tectonism occurred in the form of ridge-subduction-related subsidence and associated tectonic erosion. The hydrothermal alteration of part of the Chilean accretionary wedge sediments was most likely created by high heat flow from the subducted spreading ridge.