This paper deals with effects of double flow control devices (DFCDs) on flat plate film cooling performance. Aiming for further improvement of film effectiveness of discrete cooling holes, this new type of controlling method is invented and recently patented by the authors. The performance of base-type DFCDs, installed just upstream of cooling holes with conventional round or fan-shaped exits, is thoroughly investigated and reported in this study. Effects of the hole pitch are examined. Three hole-pitch cases, 3.0d, 4.5 d and 6.0 d are examined in this study to explore a possibility of reducing the cooling air by the application of DFCDs, where d is a hole diameter. In order to investigate the film effectiveness, a transient method using a high-resolution infrared camera is adopted. At the downstream of the cooling hole, the time-averaged temperature field is captured by a thermocouple rake and the time-averaged velocity field is captured by 3D Laser Doppler Velocimeter (LDV), respectively. Furthermore, the aerodynamic loss characteristics of the cooling hole with and without DFCDs are measured by a total pressure probe rake. The experiments are carried out for two blowing ratios, 0.5 and 1.0. It is found that DFCDs are quite effective in increasing the film effectiveness not only for round but also the fan-shaped holes.
Starting from the base-type device, a robust optimization using Taguchi Method has been made by the present authors and will be reported as Part II.