2011
DOI: 10.1590/s0103-90162011000200002
|View full text |Cite
|
Sign up to set email alerts
|

Sugarcane yield estimates using time series analysis of spot vegetation images

Abstract: The current system used in Brazil for sugarcane (Saccharum officinarum L.) crop forecasting relies mainly on subjective information provided by sugar mill technicians and on information about demands of raw agricultural products from industry. This study evaluated the feasibility to estimate the yield at municipality level in São Paulo State, Brazil, using 10-day periods of SPOT Vegetation NDVI images and ECMWF meteorological data. Twenty municipalities and seven cropping seasons were selected between 1999 and… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

2
26
0
8

Year Published

2012
2012
2024
2024

Publication Types

Select...
6
2

Relationship

1
7

Authors

Journals

citations
Cited by 55 publications
(36 citation statements)
references
References 9 publications
2
26
0
8
Order By: Relevance
“…), where the land holdings are particularly small (up to 0.1 ha), and where the landscape is very heterogeneous (Figure 2). This result is similar to the low accuracy obtained for fields smaller than the pixel size and high accuracies for large fields [15]. When excluding Mumias zone, the RMSE decreases to 3.41 t· ha −1 , which is in agreement in both cases, with the user specification of RMSE 5 t· ha −1 .…”
Section: A Quantitative Evaluation Of the Modelsupporting
confidence: 87%
See 1 more Smart Citation
“…), where the land holdings are particularly small (up to 0.1 ha), and where the landscape is very heterogeneous (Figure 2). This result is similar to the low accuracy obtained for fields smaller than the pixel size and high accuracies for large fields [15]. When excluding Mumias zone, the RMSE decreases to 3.41 t· ha −1 , which is in agreement in both cases, with the user specification of RMSE 5 t· ha −1 .…”
Section: A Quantitative Evaluation Of the Modelsupporting
confidence: 87%
“…In Brazil for example [15], 1 km SPOT-VEGETATION data was used, taking advantage of its daily temporal resolution and coupling it with meteorological data to monitor sugarcane development. Cropping seasons were successfully identified using the NDVI data and further facilitated classification of the data for analysis.…”
Section: Introductionmentioning
confidence: 99%
“…Assim, os resultados obtidos por meio desta imagem são apropriados para análises regionais, de baixa escala (Verbeiren et al, 2008;Fernandes et al, 2011). Por este motivo, a comparação entre os resultados obtidos pela análise das imagens e os dados da PAM foram agregados para as microrregiões do Estado de São Paulo.…”
Section: Resultsunclassified
“…Técnicas com uso de imagens de sensoriamento remoto e classificadores digitais têm sido aplicadas com sucesso para algumas culturas agrícolas (Yi et al, 2007;Rudorff et al, 2010). Ao se considerar as exigências de cobertura de grandes áreas e os longos períodos anuais intersafras, o uso de dados de sensores remotos de resolução moderada possibilita o monitoramento de culturas agrícolas com grande eficiência e baixo custo operacional (Fernandes et al, 2011). Portanto, pode-se destacar o eficiente uso de classificadores de séries temporais, com base em modelos lineares de mistura espectral (MLME) (Shimabukuro & Smith, 1991), aplicados a índices de vegetação, como o índice de vegetação por diferença normalizada (NDVI), o índice de água por diferença normalizada (NDWI) e o índice de vegetação realçada (EVI) (Rembold & Maselli, 2006;YI et al, 2007).…”
Section: Introductionunclassified
“…Then, these pixels were used as input data to estimate yield. A similar approach was used by (Fernandes et al, 2011).…”
Section: Regression Modelmentioning
confidence: 99%