The human pathogenic bacterium Helicobacter pylori has been ascertained to be an aetiological agent for chronic active gastritis and a significant determinant in peptic and duodenal ulcer diseases. Endophytic metabolites are being recognized as a versatile arsenal of antimicrobial agents, since some endophytes have been shown to possess superior biosynthetic capabilities owing to their presumable gene recombination with the host, while residing and reproducing inside the healthy plant tissues. A total of 32 endophytic fungi isolated from the medicinal herb Cynodon dactylon (Poaceae) were grown in in vitro culture, and the ethyl acetate extracts of the cultures were examined in vitro for the anti-H. pylori activity. As a result, a total of 16 endophyte culture extracts were identified as having potent anti-H. pylori activities. Subsequently, a detailed bioassay-guided fractionation of the extract of the most active endophyte (strain number: CY725) identified as Aspergillus sp., was performed to afford eventually four anti-H. pylori secondary metabolites. The four isolated compounds were identified through a combination of spectral and chemical methods (IR, MS, 1 H-and 13 C-NMR) to be helvolic acid, monomethylsulochrin, ergosterol and 3b-hydroxy-5a,8a-epidioxy-ergosta-6,22-diene with corresponding MICs of 8.0, 10.0, 20.0 and 30.0 lg/ml, respectively. The MIC of ampicillin co-assayed as a reference drug against H. pylori was 2.0 lg/ml. Furthermore, preliminary examination of the antimicrobial spectrum of helvolic acid, the most active anti-H. pylori metabolite characterized from the endophyte culture, showed that it was inhibitory to the growth of Sarcina lutea, Staphylococcus aureus and Candida albicans with MICs of 15.0, 20.0 and 30.0 lg/ml, respectively.