A superconducting integrated receiver (SIR) comprises all of the elements needed for heterodyne detection on a single chip. Light weight and low power consumption combined with nearly quantum-limited sensitivity and a wide tuning range of the superconducting local oscillator make the SIR a perfect candidate for many practical applications. For the first time, we demonstrated the capabilities of the SIR technology for remote operation under harsh environmental conditions and for heterodyne spectroscopy at atmospheric limb sounding on board a high-altitude balloon. Recently, the SIR was successfully implemented for the first spectral measurements of THz radiation emitted from intrinsic Josephson junction stacks (BSCCO mesa) at frequencies up to 750 GHz; linewidth below 10 MHz has been recorded in the high bias regime. The phase-locked SIR has been used for the locking of the BSCCO oscillator under the test. To extend the operation range of the SIR well above 1 THz, a new technique for fabrication of high-quality SIS tunnel junctions with gap voltage Vg up to 5.3 mV has been developed. Integration of a superconducting high-harmonic phase detector with a cryogenic oscillator opens a possibility for efficient phase locking of the sources with free-running linewidth up to 30 MHz that is important both for BSCCO mesa and NbN/MgO/NbN oscillators.