Rats use rhythmic whisker movements, called active whisking, to sense the environment, which include whisker protractions followed by retractions at various frequencies. Using a proxy of active whisking in anesthetized rats, called artificial whisking, which is induced by electrically stimulating the facial motor nerve, we characterized the neural responses evoked in the barrel cortex by whisking in air (without contact) and on a surface (with contact). Neural responses were compared between distinct network states consisting of cortical deactivation (synchronized slow oscillations) and activation (desynchronized state) produced by neuromodulation (cholinergic or noradrenergic stimulation in neocortex or thalamus). Here we show that population responses in the barrel cortex consist of a robust signal driven by the onset of the whisker protraction followed by a whisking retraction signal that emerges during low frequency whisking on a surface. The whisking movement onset signal is suppressed by increasing whisking frequency, is controlled by cortical synaptic inhibition, is suppressed during cortical activation states, is little affected by whisking on a surface, and is ubiquitous in ventroposterior medial (VPM) thalamus, barrel cortex, and superior colliculus. The whisking retraction signal codes the duration of the preceding whisker protraction, is present in thalamocortical networks but not in superior colliculus, and is robust during cortical activation; a state associated with natural exploratory whisking. The expression of different whisking signals in forebrain and midbrain may define the sensory processing abilities of those sensorimotor circuits. Whisking related signals in the barrel cortex are controlled by network states that are set by neuromodulators.