2022
DOI: 10.1155/2022/1603104
|View full text |Cite
|
Sign up to set email alerts
|

Supervised and Semisupervised Manifold Embedded Knowledge Transfer in Motor Imagery-Based BCI

Abstract: A long calibration procedure limits the use in practice for a motor imagery (MI)-based brain-computer interface (BCI) system. To tackle this problem, we consider supervised and semisupervised transfer learning. However, it is a challenge for them to cope with high intersession/subject variability in the MI electroencephalographic (EEG) signals. Based on the framework of unsupervised manifold embedded knowledge transfer (MEKT), we propose a supervised MEKT algorithm (sMEKT) and a semisupervised MEKT algorithm (… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 58 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?