A chlorophyll derivative with a central zinc ion, a methoxy functionality at its 3(1)-position, and functionalized with a second-generation dendron (3,4-3,4,5)12G2-CH(2)OH at its 17(2)-position was synthesized starting from natural chlorophyll a (Chl a). This compound exhibits liquid crystalline (LC) behavior and its mesomorphic properties have been characterized by differential scanning calorimetry (DSC), polarisation optical microscopy (POM), powder X-ray diffraction (XRD), and scanning probe microscopy (SPM). A combination of powder XRD, high resolution scanning tunneling microscopy (STM), and atomic force microscopy (AFM) experiments revealed the formation of nano-segregated well-ordered columnar tubular superstructures consisting of about five molecules in the column stratum. These self-assembled columns are further self-organized into a two-dimensional oblique unit cell lattice. Semiconducting behavior of this compound has been studied by pulse-radiolysis time-resolved microwave conductivity (PR-TRMC) method and charge carrier mobility values of ∼10(-2) cm(2) V(-1) s(-1) are observed. Such organized columnar superstructures constructed from semisynthetic zinc chlorins are reminiscent of the tubular organization of the bacteriochlorophyll dyes in the light-harvesting chlorosomal antennae of green sulphur bacteria.