Electromagnetic (EM) absorbers and emitters have attracted much interest because of their versatile applications. A photonic heterostructure composed of silicon carbide (SiC) layer/germanium (Ge) cavity/distributed Bragg reflector (DBR) has been proposed. Selective emission properties have been investigated through rigorous coupled wave analysis (RCWA) method. The results illustrate that Tamm phonon-polaritons can be excited, and the magnetic field is partially centralized at the junction of Ge cavity and SiC film, aimed to improve the interactions of photon–phonon. The absorptivity/emissivity of the structure can be better optimized by controlling the coupling of surface modes with the incident wave. Near-unity absorption can be achieved through optimizing the SiC grating/Ge cavity/distributed Bragg reflector (DBR) multilayer structure with geometrical parameters of ds = 0.75 μm, dg = 0.7 μm, d1 = 1.25 μm and d2 = 0.75 μm, respectively. Physical mechanism of selective emission characteristics is deliberated. In addition, the simulation results demonstrate that the emitter desensitizes to the incidence angle and polarization state in the mid-infrared (MIR) range. This research ameliorates the function of the selective emitters, which provides more efficient design for SiC-based systems.