Microbial community structure, potential microbial activity and As resistance were affected by arsenic (As), chromium (Cr) and copper (Cu) contamination in soils of abandoned wood impregnating plants. Contaminated soils differed in the concentrations of soil acid-soluble and total water-soluble As, Cr and Cu, and in the concentration of bioavailable As analyzed with a bacterial sensor. Phospholipid fatty acid (PLFA) and 16S rRNA gene terminal restriction fragment length polymorphism (t-RFLP) profiles indicated that exposure to high metal contamination or subsequent effects of this exposure permanently changed microbial community structure. The total number of colony forming units (CFU) was not affected by metal contamination and the As(V)-resistant bacterial ratio to total heterotrophic plate counts was high (0.5-1.1) and relatively independent of the concentration of As. In contrast, the proportion of As(III)-resistant bacteria was dependent on the concentration of As in the soils and a significant positive relationship was found between the bioavailability of As and the proportion of As(III)-resistant bacteria. Dominant As-resistant isolates from contaminated soils were identified by their fatty acid methyl ester (FAME) profiles as Acinetobacter, Edwardsiella, Enterobacter, Pseudomonas, Salmonella and Serratia species. No differences were noted in glucose mineralization among contaminated and control soil samples within sites. Based on [(14)C]glucose mineralization the community was able to compensate for the reduced diversity. According to t-RFLP results, this was not due to a reversion towards the unexposed community, but mainly due to the appearance of new dominating species. This study, combining complementary culture-dependent and -independent methods, suggests that microbes are able to respond to soil metal contamination and maintain metabolic activity apparently through changes in microbial community structure and selection for resistance.