The textile industry produces enormous volumes of wastewater which must be treated effectively. In this study, biosorbent from the agricultural waste of potato peels (PP), which is environmentally friendly and easy to find everywhere, was used for the treatment of real textile wastewater. Physical modification, chemical activation, bio-hybrid and high-pressure modification processes were applied to PP to investigate the organic pollutant removal (chemical oxygen demand (COD)) and inorganic (Fe2+, Ni2+, Cu2+ and Cd2+) from original textile wastewater. Additionally, the effects of contact time (5, 15, 30, 60, 120, and 1440 min) and particle sizes (1.5–1.0 mm, 1.0–0.5 mm, and smaller than 0.5 mm in diameter) were investigated in a batch treatment system. Application of the physical modification process to PP presented an attractive solution for COD removal efficiency (69.50%) and removal efficiencies for four divalent metal ions; 78.6% for Cu2+, 63.6% for Ni2+, 40% for Fe2+, and 34.6% for Cd2+. FT-IR, SEM, and EDX analysis were performed to reveal the adsorption mechanism of the modified adsorbents. The FT-IR results indicate that the adsorption process fits the chemical and physical removal mechanisms, which were also supported by SEM images and EDX results.