Reconstruction and annotation of volume electron microscopy data sets of brain tissue is challenging, but can reveal invaluable information about neuronal circuits. Significant progress has recently been made in automated neuron reconstruction, as well as automated detection of synapses. However, methods for automating the morphological analysis of nanometer-resolution reconstructions are less established, despite their diverse application possibilities. Here, we introduce cellular morphology neural networks (CMNs), based on multi-view projections sampled from automatically reconstructed cellular fragments of arbitrary size and shape. Using unsupervised training we inferred morphology embeddings ("Neuron2vec") of neuron reconstructions and trained CMNs to identify glia cells in a supervised classification paradigm which was used to resolve neuron reconstruction errors. Finally, we demonstrate that CMNs can be used to identify subcellular compartments and the cell types of neuron reconstructions.