2018
DOI: 10.15587/1729-4061.2018.139892
|View full text |Cite
|
Sign up to set email alerts
|

Synthesis and technical realization of control systems with discrete fractional integral-differentiating controllers

Abstract: Дослiджено замкненi системи з дробовим порядком астатизму, якi для багатьох технiчних об'єктiв забезпечують кращi динамiчнi i статичнi показники порiвняно з системами з цiлочисельним порядком. На пiдставi аналiзу частотних характеристик, перехiдних процесiв i модифiкованого критерiю оцiнки якостi отримано оптимальнi спiввiдношення мiж параметрами бажаної передавальної функцiї. Надано нормованi перехiднi функцiї, на пiдставi яких може бути обрано бажаний порядок астатизму системи i визначено структуру i парамет… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
3
0

Year Published

2019
2019
2022
2022

Publication Types

Select...
4
2

Relationship

1
5

Authors

Journals

citations
Cited by 7 publications
(3 citation statements)
references
References 8 publications
0
3
0
Order By: Relevance
“…Therefore, over a certain frequency range, it is acceptable to approximate with the link of higher integer orders from the left-and right-hand sides of the differential equation, which ensures an approximately constant phase shift [20,21]. Other methods approximate dependences of coefficients on an array number, which reduces the time of computation [22]. Applying these methods makes it possible to employ fractional-order regulators in high-speed systems, specifically, in a current circuit of electric machines.…”
Section: Literature Review and Problem Statementmentioning
confidence: 99%
“…Therefore, over a certain frequency range, it is acceptable to approximate with the link of higher integer orders from the left-and right-hand sides of the differential equation, which ensures an approximately constant phase shift [20,21]. Other methods approximate dependences of coefficients on an array number, which reduces the time of computation [22]. Applying these methods makes it possible to employ fractional-order regulators in high-speed systems, specifically, in a current circuit of electric machines.…”
Section: Literature Review and Problem Statementmentioning
confidence: 99%
“…Based on the Riemann-Liouville form, it is possible to introduce a corrective bias in the denominator, which reduces the regular error by dozens of times without applying corrective calculations [43]. As a result, we get:…”
mentioning
confidence: 99%
“…This makes it possible to significantly simplify the procedure for calculating the fractional integral and reduce it to several tens or hundreds of combinations of multiplication and addition operations during one quantization period. The most important thing is that only a limited number of input signal values and the same number of coefficients must be stored in the processor memory [43]. To optimize calculations, it is advisable to store the last values of the input signal in an organized ring array with numbering from 0 to n dim − 1.…”
mentioning
confidence: 99%