The stability of Electro Phoretic Deposition (EPD) suspensions containing nanoparticles relies on the impact of Zeta Potential (ZP or ). This property ensures that the nanoparticles have a consistent and stable surface charge, resulting in a uniform and stable coating. This research has been conducted as an experimental study and used the Taguchi method to design experiment optimization of the Zeta potential values, which were obtained by preparing nine suspensions. The study aimed to determine the optimal ZP value for the EPD suspension created with three materials mixed: nanochitason, Chitason/SrCl2/MgO, and a constant value of hydroxyapatite (HA) with consideration of the pH effect. After conducting an analysis, it was found that the suspension's Zeta Potential is negatively charged below a pH value of 8.22. Between 8.22 and 9.7, the ZP has a positive charge. The suspension's isoelectric point (IEP) is 8.22, with a high correlation coefficient indicating the model's reliability in predicting responses. The analysis showed that SrCl2 has the most significant impact on the suspension's ZP, followed by Chitason (CH), with MgO having the least impact. The results demonstrate the effectiveness of this analysis in determining the optimum ZP value for various solutions prepared from different biomaterial particles