The
reactivity of the phosphanylphosphinidene complex [(DippN)2W(Cl)(η2-P-PtBu2)]− (1) toward chalcogens (Ch = Se,
S) was studied. Reactions of stoichiometric amounts of 1 with chalcogens in DME yielded monomeric tungsten
complexes with phosphanylphosphinidene chalcogenide ligands of the
formula tBu2P–P–Ch (Ch =
Se (in 2) and S (in 5)), which can be regarded
as products of the addition of a chalcogen atom to a PW bond
in starting complex 1. The dissolution of selenophosphinidene
complex 2 in nondonor solvents led to the formation of
a dinuclear complex of tungsten (3) bearing a tBu2P(Se)–P ligand together with [tBuSe2Li(dme)2]2 and
polyphosphorus species. Under the same reaction conditions, thiophosphinidene
complex 5 dimerized via the formation of transient complex 7, possessing a thiotetraphosphane-diido moiety tBu2P(S)–P–P–PtBu2. The elimination of the tBu2PS
group from 7 yielded stable dinuclear tungsten complex 8 with an unusual phosphinidene tBu2P–P–P ligand. The reaction of 1 with excess
chalcogen led to the cleavage of the P–P bond in the tBu2P–P ligand and the formation of [(DippN)2W(PCh4)]2
2– and
[tBuCh2Li(dme)2]2. The isolated compounds were characterized by NMR spectroscopy
and X-ray crystallography. Furthermore, the calculated geometries
of the free selenophosphinidenes, tBu2P–P–Se and tBu2P(Se)−P,
were compared with their geometries when serving as ligands in complexes 2 and 3.