Avenaol, isolated from the allelopathic plant black oat, was the first C20 germination stimulant related to strigolactones. Structurally, it consisted of a bicyclo[4.1.0]heptanone skeleton containing a cyclopropane ring bearing three main chains projecting in the same direction (i.e. all-cis-substituted cyclopropane). Herein, we report the total synthesis of avenaol using a robust strategy involving the formation of an all-cis-substituted cyclopropane via an alkylidenecyclopropane. The key factors in the success of this total synthesis include the Rh-catalysed intramolecular cyclopropanation of an allene, an Ir-catalysed stereoselective double-bond isomerisation, and the differentiation of two hydroxymethyl groups via the regioselective formation and oxidation of a tetrahydropyran based on the reactivity of a cyclopropyl group. This strategy effectively avoids the undesired ring opening of the cyclopropane ring and the formation of a caged structure. Furthermore, this study confirms the proposed structure of avenaol, including its unique all-cis-substituted cyclopropane moiety.