Peptides have become valuable as catalysts for a variety of different reactions, but little is known about the conformational properties of peptidic catalysts. We investigated the conformation of the peptide H-dPro-Pro-Glu-NH, a highly reactive and stereoselective catalyst for conjugate addition reactions, and the corresponding enamine intermediate in solution by NMR spectroscopy and computational methods. The combination of nuclear Overhauser effects (NOEs), residual dipolar couplings (RDCs), J-couplings, and temperature coefficients revealed that the tripeptide adopts a single predominant conformation in its ground state. The structure is a type I β-turn, which gains stabilization from three hydrogen bonds that are cooperatively formed between all functional groups (secondary amine, carboxylic acid, amides) within the tripeptide. In contrast, the conformation of the enamine intermediate is significantly more flexible. The conformational ensemble of the enamine is still dominated by the β-turn, but the backbone and the side chain of the glutamic acid residue are more dynamic. The key to the switch between rigidity and flexibility of the peptidic catalyst is the COH group in the side chain of the glutamic acid residue, which acts as a lid that can open and close. As a result, the peptidic catalyst is able to adapt to the structural requirements of the intermediates and transition states of the catalytic cycle. These insights might explain the robustness and high reactivity of the peptidic catalyst, which exceeds that of other secondary amine-based organocatalysts. The data suggest that a balance between rigidity and flexibility, which is reminiscent of the dynamic nature of enzymes, is beneficial for peptidic catalysts and other synthetic catalysts.
The tripeptide H-dPro-Pro-Asn-NH2 is presented as a catalyst for asymmetric conjugate addition reactions of aldehydes to maleimide. The peptidic catalyst promotes the reaction between various aldehydes and unprotected maleimide with high stereoselectivities and yields. The obtained products were readily derivatized to the corresponding pyrrolidines, lactams, lactones, and peptide-like compounds. (1) H NMR spectroscopic, crystallographic, and computational investigations provided insight into the conformational properties of H-dPro-Pro-Asn-NH2 and revealed the importance of hydrogen bonding between the peptide and maleimide for catalyzing the stereoselective C-C bond formation.
The hetisine-type natural products exhibit one of the most complex carbon skeletons within the diterpenoid alkaloid family. The use of network analysis has enabled a synthesis strategy to access alkaloids in this class with hydroxylation on the A-ring. Key transformations include a benzyne acyl-alkylation to construct a key fused 6-7-6 tricycle, a chemoselective nitrile reduction, and sequential C-N bond formations using a reductive cyclization and a photochemical hydroamination to construct an embedded azabicycle. Our strategy should enable access to myriad natural and unnatural products within the hetisine-type.
Crystal structures of catalytically active tripeptides of the general type H-dPro-Pro-Xaa and related N-acetylated analogs were compared. The influence of acylation at the N-terminus, the nature of the C-terminal residue, coordinating groups, and intramolecular hydrogen bonds on the conformation of the tripeptides was examined. Regardless of the presence or absence of stabilizing intramolecular H-bonds or n → π* interactions, all of the analyzed peptides share a β-turn-like conformation, which highlights the structural rigidity of the dPro-Pro motif and its value for conformational preorganization. The C-terminal residues and coordinating moieties were found to affect the turn-conformation, which suggests that H-dPro-Pro-Xaa type peptides are sufficiently flexible to adopt distinctly different but related conformations.
Within the diterpenoid alkaloid family of natural products, the hetidine and hetisine structural types have been the targets of a number of synthetic studies. Various strategies have been pursued to access the azacyclic moiety of these natural products as well as the characteristic [2.2.2] bicyclic structural motif. This perspective article examines the different disconnections and approaches that have been applied to the synthesis of these natural products to date.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.