Background: Quantitative systems pharmacology (QSP) is an emerging discipline that integrates diverse data to quantitatively explore the interactions between drugs and multi-scale systems including small compounds, nucleic acids, proteins, pathways, cells, organs and disease processes. Results: Various computational methods such as ADME/T evaluation, molecular modeling, logical modeling, network modeling, pathway analysis, multi-scale systems pharmacology platforms and virtual patient for QSP have been developed. We reviewed the major progresses and broad applications in medical guidance, drug discovery and exploration of pharmacodynamic material basis and mechanism of traditional Chinese medicine. Conclusion: QSP has significant achievements in recent years and is a promising approach for quantitative evaluation of drug efficacy and systematic exploration of mechanisms of action of drugs.Author summary: Quantitative systems pharmacology (QSP) is an emerging discipline that integrates diverse data to quantitatively explore the interactions between drugs and multi-scale systems including small compounds, nucleic acids, proteins, pathways, cells, organs and disease processes. This review is an attempt to introduce the computational methods for QSP, including ADME/T (absorption, distribution, metabolism, excretion and toxicity) evaluation, molecular modeling, logical modeling, network modeling, pathway analysis, multi-scale systems pharmacology platforms and virtual patient as well as their applications in medical guidance, drug discovery and explorations of pharmacodynamics material basis and mechanism of traditional Chinese medicine.