Preventing land desertification is one of the 17 sustainable development goals of the United Nations, which can effectively promote the sustainable development of desert greening. Currently, tree plantation is the most effective way to achieve this goal. However, the existing tree-plantation activities have some imperfections, including low efficiency, labor-intensiveness, challenging environments, and the low survival rate of saplings. Therefore, to contribute to the sustainable development of desert greening, this paper presents a practical desert tree-planting vehicle based on scientific and effective design and evaluation methods. First, based on the survey results, we used the objectives tree method to clarify the design objectives of the tree-planting vehicle. Second, the functional system boundaries of the tree planting vehicle were clarified using the function analysis method. Third, several alternatives were obtained using the finite structure and morphological analysis methods. Finally, an optimal solution was obtained using fuzzy comprehensive evaluation. This optimal design scheme has the characteristics of mechanical automatic planting, a closed cockpit, and large-capacity storage space, which can improve the construction efficiency and labor intensity, thereby contributing to the sustainable development of desert greening.