The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that:• a full bibliographic reference is made to the original source • a link is made to the metadata record in DRO • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders.Please consult the full DRO policy for further details.
ABSTRACTThe concept of causality is naturally defined in terms of conditional distribution, however almost all the empirical works focus on causality in mean. This paper aims to propose a nonparametric statistic to test the conditional independence and Granger non-causality between two variables conditionally on another one. The test statistic is based on the comparison of conditional distribution functions using an L 2 metric. We use Nadaraya-Watson method to estimate the conditional distribution functions. We establish the asymptotic size and power properties of the test statistic and we motivate the validity of the local bootstrap. We ran a simulation experiment to investigate the finite sample properties of the test and we illustrate its practical relevance by examining the Granger non-causality between S&P 500 Index returns and VIX volatility index. Contrary to the conventional t-test which is based on a linear mean-regression, we find that VIX index predicts excess returns both at short and long horizons.