Objective
Dual-task methodologies are utilized to probe attentional resource sharing between motor and cognitive systems. Computerized neuropsychological testing is an advanced approach for cognitive assessment and its application in dual task testing is evolving. This study aimed to establish the test-retest reliability and concurrent validity of a custom-designed, computerized, cognitive test battery.
Methods
Fifteen healthy young adults were tested for the following domains (and tasks): 1) visuomotor function (Spot and Click, SC), 2) phonemic memory (Category Naming, Cat N) and verbal fluency (Word List Generation, WLG), 3) response inhibition (Color Naming, CN), 4) discriminant decision-making (Unveil the Star, US), 5) visual working memory (Triangle and Letter Tracking, TT and LT), 6) problem solving (Peg Game, PG) and 7) information processing speed (Letter-Number, LN). The reaction time, accuracy, time of completion, total number of responses and total number of errors were used as the outcome variables.
Results
The intraclass correlation coefficient (ICC) was used to determine reliability for all outcome variables and concurrent validity was established with respect to the Delis Kaplan Executive Function System™ (D-KEFS™). Reliability ranged from good to excellent for all seven tasks (ICC>0.65). The Cat.N, WLG and CN showed good correlation and PG task showed moderate correlation with tests of the D-KEFS.
Conclusion
Findings indicate that these computerized cognitive tests were both valid and reproducible and therefore can be easily implemented by clinicians for assessing cognition and incorporated for dual-task testing and training.