Activation of the intrarenal renin-angiotensin system (RAS) can elicit hypertension independently from the systemic RAS. However, the precise mechanisms by which intrarenal Ang II increases blood pressure have never been identified. To this end, we studied the responses of mice specifically lacking kidney angiotensin-converting enzyme (ACE) to experimental hypertension. Here, we show that the absence of kidney ACE substantially blunts the hypertension induced by Ang II infusion (a model of high serum Ang II) or by nitric oxide synthesis inhibition (a model of low serum Ang II). Moreover, the renal responses to high serum Ang II observed in wild-type mice, including intrarenal Ang II accumulation, sodium and water retention, and activation of ion transporters in the loop of Henle (NKCC2) and distal nephron (NCC, ENaC, and pendrin) as well as the transporter activating kinases SPAK and OSR1, were effectively prevented in mice that lack kidney ACE. These findings demonstrate that ACE metabolism plays a fundamental role in the responses of the kidney to hypertensive stimuli. In particular, renal ACE activity is required to increase local Ang II, to stimulate sodium transport in loop of Henle and the distal nephron, and to induce hypertension.
IntroductionHypertension affects more than 1.5 billion people worldwide and is a key contributor to stroke and cardiovascular and kidney disease. The importance of the renin-angiotensin system (RAS) in the origins of this disorder is underscored by the blood pressure-lowering effects of angiotensin-converting enzyme (ACE) inhibitors and Ang II receptor blockers. However, plasma renin activity, the clinical index used to determine systemic RAS status, is distributed over a wide range in hypertensive subjects (1, 2). This observation prompts the suggestion that alterations in tissue-specific RAS, not detected by plasma renin activity, may underlie hypertension. The kidneys play a central role in long-term blood pressure control through their regulation of sodium and fluid balance. Because renal salt retention is strongly influenced by Ang II and there is a complete RAS along the nephron, it has been suggested that increased local Ang II formation may induce hypertension. Indeed, using gene-targeted mice, we and others have shown that increased intrarenal Ang II formation results in hypertension (3-6). As a whole, these observations suggest that renal Ang II synthesis has important consequences for nephron function and the development of hypertension. However, precisely how the intrarenal generation of Ang II elevates blood pressure is not known. Therefore, we tested the hypothesis that, in conditions in which the intrarenal RAS becomes activated, local Ang II synthesis enhances sodium and water reabsorption along the nephron. In addition, we postulated that inhibiting intrarenal Ang II formation effectively protects against hypertension.