Prion proteins are key molecules in transmissible spongiform encephalopathies (TSEs), but the precise mechanism of the conversion from the cellular form (PrP C ) to the scrapie form (PrP Sc ) is still unknown. Here we discovered a chemical chaperone to stabilize the PrP C conformation and identified the hot spots to stop the pathogenic conversion. We conducted in silico screening to find compounds that fitted into a ''pocket'' created by residues undergoing the conformational rearrangements between the native and the sparsely populated high-energy states (PrP*) and that directly bind to those residues. Forty-four selected compounds were tested in a TSE-infected cell culture model, among which one, 2-pyrrolidin-1-yl-N-[4-[4-(2-pyrrolidin-1-yl-acetylamino)-benzyl]-phenyl]-acetamide, termed GN8, efficiently reduced PrP Sc . Subsequently, administration of GN8 was found to prolong the survival of TSE-infected mice. Heteronuclear NMR and computer simulation showed that the specific binding sites are the A-S2 loop (N159) and the region from helix B (V189, T192, and K194) to B-C loop (E196), indicating that the intercalation of these distant regions (hot spots) hampers the pathogenic conversion process. Dynamics-based drug discovery strategy, demonstrated here focusing on the hot spots of PrP C , will open the way to the development of novel anti-prion drugs.anti-prion compound ͉ binding sites ͉ chemical chaperone ͉ dynamicsbased drug discovery ͉ transmissible spongiform encephalopathy