The increasing anthropologic pressure and the modernization of agriculture have led to a forsaking of pearl millet traditional cultivars, inducing a progressive loss of the genetic variability encompassed in this locally adapted germplasm. Imperatively, national efforts based on robust data gleaned from genetic surveys have to be undertaken in order to set up suitable conservation priorities. In this study, in addition to the assessment of the genetic diversity and population structure among and within a set of seven pearl millet landrace populations from coastal North Africa, demographic and phylogenetic data, conservation priority scores were calculated according to Vane-Wright et al. (1991). To date, genetic diversity of pearl millet in North Africa is still poorly documented. The present survey reports for the first time the use of highly informative nSSR markers (PIC = 0.74) on Pennisetum glaucum landraces representative of the Mediterranean coastline of North Africa. A high level of genetic diversity was obtained within the investigated landraces (H = 0.80) at the population level. F, AFC-3D, and Bayesian clustering underlined significant differentiation and an apparent genetic structure, according to geographical origin. Phylogenetic considerations integrated with demographic and genetic information enabled conclusive inferences of highly prioritized populations for conservation. Populations Haouaria, Hammem Laghzez, Mahdia, and Medenine, representatives of the main pearl millet growing areas in Tunisia and cultivated in the North African littoral, should be strongly recommended for an ex situ conservation program. Dynamic on-farm conservation method is also required as it allows the local landraces to evolve in different environments, while maintaining their adaptation potentials.