Although animal models show a clear link between noise exposure and damage to afferent cochlear synapses, the relationship between noise exposure and efferent function appears to be more complex. Animal studies indicate that high intensity noise exposure reduces efferent medial olivocochlear (MOC) reflex strength, whereas chronic moderate noise exposure is associated with a conditioning effect that enhances the MOC reflex. The MOC reflex is predicted to improve speech-in-noise perception and protects against noise-induced auditory damage by reducing cochlear gain. In humans, MOC reflex strength can be estimated by measuring contralateral inhibition of distortion product otoacoustic emissions (DPOAEs). The objective of this study was to determine the impact of military noise exposure on efferent auditory function by measuring DPOAE contralateral inhibition in young Veterans and non-Veterans with normal audiograms. Compared with non-Veteran controls, Veterans with high levels of reported noise exposure demonstrated a trend of reduced contralateral inhibition across a broad frequency range, suggesting efferent damage. Veterans with moderate noise exposure showed trends of reduced inhibition from 3 to 4 kHz but greater inhibition from 1 to 1.5 kHz, consistent with conditioning. These findings suggest that, in humans, the impact of noise exposure on the MOC reflex differs depending on the noise intensity and duration.