1998
DOI: 10.1006/jsco.1997.0168
|View full text |Cite
|
Sign up to set email alerts
|

The Computation and Application of the Generalized Inverse via Maple

Abstract: In Karampetakis (1995) an algorithm for computing the generalized inverse of a singular polynomial matrix A(s) ∈ R[s] n×m has been presented. In this paper the algorithm is extended to that of the singular rational matrix, A(s) ∈ R(s) n×m , and the algorithm is subsequently implemented in the symbolic computational package Maple. Several applications of its use are given.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
2

Citation Types

0
22
0
5

Year Published

2004
2004
2019
2019

Publication Types

Select...
5
2
1

Relationship

0
8

Authors

Journals

citations
Cited by 43 publications
(27 citation statements)
references
References 10 publications
0
22
0
5
Order By: Relevance
“…The group inverse, denoted by A # , is the unique {1, 2, 5}-inverse of A, and it exists if and only if ind(A) = min{k : rank(A k+1 ) = rank(A k )}=1. A matrix X = A D is said to be the Drazin inverse of A if (1 k ) (for some positive integer k), (2) and (5) are satisfied. By A −1 R and A −1 L we denote a right and a left inverse of A, respectively.…”
Section: Introductionmentioning
confidence: 99%
See 1 more Smart Citation
“…The group inverse, denoted by A # , is the unique {1, 2, 5}-inverse of A, and it exists if and only if ind(A) = min{k : rank(A k+1 ) = rank(A k )}=1. A matrix X = A D is said to be the Drazin inverse of A if (1 k ) (for some positive integer k), (2) and (5) are satisfied. By A −1 R and A −1 L we denote a right and a left inverse of A, respectively.…”
Section: Introductionmentioning
confidence: 99%
“…Corresponding algorithm for two-variable polynomial matrix is presented in [7]. In [5] it is described an implementation of the algorithm for computing the Moore-Penrose inverse of a singular one variable rational matrix in the symbolic computational language MAPLE.…”
Section: Introductionmentioning
confidence: 99%
“…An extension of this algorithm to the one and two-variable polynomial matrices has been proposed by [10], [12], [13], [14]. A Leverrier-Faddeev algorithm has also been proposed by Grevile [7] for the computation of the Drazin inverse of square constant matrices with extensions to the one-variable polynomial matrices by [11], [18].…”
Section: Introductionmentioning
confidence: 99%
“…Izračunavanje Moore-Penroseovog inverza za polinomijalne i racionalne matrice, baziran na Leverrier-Faddeevom algoritmu proučavan je u [2,17,22,23,24,25]. U literaturi je poznat veći broj aplikacija za izračunavanje generisanje inverza polinomijalnih matrica [22,23,24,25,30,31,32].…”
Section: Teorema 113unclassified
“…U literaturi je poznat veći broj aplikacija za izračunavanje generisanje inverza polinomijalnih matrica [22,23,24,25,30,31,32]. U [22] opisana je implementacija algoritma za izračunavanje Moore-Penroseovog inverza singularnih racionalnih matrica u programskom jeziku MAPLE. Algoritmi koji koriste reprezentaciju matrice u polinomijalnoj formi, su naročito pogodni za implementaciju u programskim paketima koji ne mogu vršiti simbolička izračunavanja.…”
Section: Teorema 113unclassified