We studied the effects on alfalfa preservation and chemical composition of the addition of different levels of malic acid and citric acid at ensiling as well as the utilization efficiency of these 2 organic acids after fermentation. Alfalfa was harvested at early bloom stage. After wilting to a dry matter content of approximately 40%, the alfalfa was chopped into 1- to 2-cm pieces for ensiling. Four levels (0, 0.1, 0.5, and 1% of fresh weight) of malic acid or citric acid were applied to chopped alfalfa at ensiling with 4 replicates for each treatment, and the treated alfalfa forages were ensiled for 60 d in vacuum-sealed polyethylene bags (dimensions: 200 mm × 300 mm) packed with 200 to 230 g of fresh alfalfa per mini silo and an initial density of 0.534 g/cm. The application of malic or citric acids at ensiling for 60 d led to lower silage pH than was observed in the control silage (0% of malic or citric acids). Application of the 2 organic acids led to higher lactic acid concentration in alfalfa silage than in the control silage except with the application rate of 1% of fresh weight. Silages treated with both organic acids had lower nonprotein nitrogen concentrations than the control silages, and the nonprotein nitrogen concentrations in ensiled forages decreased with the increase in malic or citric acid application rates. The application of the 2 organic acid additives led to lower saturated fatty acid proportions and higher polyunsaturated fatty acid proportions in ensiled alfalfa than in the control silage. The amount of malic and citric acids degraded during ensiling of alfalfa was 1.45 and 0.63 g, respectively. At the application rate of 0.5% of fresh weight, residues of malic acid and citric acid in alfalfa silage were 11.1 and 13.6 g/kg of dry matter. These results indicate that including malic or citric acids at the ensiling of alfalfa effectively improved silage fermentation quality, limited proteolysis, improved fatty acid composition of the ensiled forage, and could provide animals with additional feed additives proven to promote animal performance. However, when the application rate of both organic acids reached 1%, the concentration of lactic acid in silages decreased notably. Additionally, 0.5 and 1% application rates also increased the yeast count in ensiled alfalfa.