Purpose
In cochlear implantation, thorough preoperative planning together with measurement of the cochlear duct length (CDL) assists in choosing the correct electrode length. For measuring the CDL, different techniques have been introduced in the past century along with the then available technology. A tablet-based software offers an easy and intuitive way to visualize and analyze the anatomy of the temporal bone, its proportions and measure the CDL. Therefore, we investigated the calculation technique of the CDL via a tablet-based software on our own cohort retrospectively.
Methods
One hundred and eight preoperative computed tomography scans of the temporal bone (slice thickness < 0.7 mm) of already implanted FLEX28™ and FLEXSOFT™ patients were found eligible for analysis with the OTOPLAN software. Measurements were performed by two trained investigators independently. CDL, angular insertion depth (AID), and cochlear coverage were calculated and compared between groups of electrode types, sex, sides, and age.
Results
Mean CDL was 36.2 ± 1.8 mm with significant differences between sex (female: 35.8 ± 0.3 mm; male: 36.5 ± 0.2 mm; p = 0.037), but none concerning side or age. Differences in mean AID (FLEX28: 525.4 ± 46.4°; FLEXSOFT: 615.4 ± 47.6°), and cochlear coverage (FLEX28: 63.9 ± 5.6%; FLEXSOFT: 75.8 ± 4.3%) were significant (p < 0.001).
Conclusion
A broad range of CDL was observed with significant larger values in male, but no significant differences concerning side or age. Almost every cochlea was measured longer than 31.0 mm. Preoperative assessment aids in prevention of complications (incomplete insertion, kinking, tipfoldover), attempt of atraumatic insertion, and addressing individual necessities (hearing preservation, cochlear malformation). The preferred AID of 720° (two turns of the cochlea) was never reached, opening the discussion for the requirement of longer CI-electrodes versus a debatable audiological benefit for the patient in his/her everyday life.