Natural graphite (NG) negative electrode materials can perform poorly compared to synthetic, or artificial, graphite (AG) negative electrodes in certain lithium ion cells. LiNi 0.5 Mn 0.3 Co 0.2 O 2 (NMC532)/(AG or NG) pouch cells were tested with various loadings of an electrolyte additive blend to study the effect of the graphite type as well as the formed solid electrolyte interphase (SEI). Cells underwent testing using ultra-high precision coulometry, isothermal microcalorimetry, in-situ pressure measurements, long term cycling and in-situ gas measurements. In short term experiments NMC532/AG and NMC532/NG cells showed similar coulombic efficiencies, parasitic heat flows, and gas production with large electrolyte additive loadings, but NG cells showed worse capacity retention in long-term tests. With low additive loadings NMC532/NG cells showed lower coulombic efficiency, higher capacity fade, more parasitic heat flow, and more gas production. In-situ cell stack pressure measurements showed that NMC532/NG cells irreversibly expanded during cycling while NMC532/AG cells did not. Although these results lead one to propose a simple model for the poor performance of NMC532/NG cells, NMC622/NG and NMC622/AG cells showed very different behavior in long term tests suggesting that positive/negative interactions play a strong role in governing the behavior of graphites in Li-ion cells. Next generation lithium ion batteries require higher energy density, longer life, better safety, and lower cost to fulfill the ever-increasing demand for electric vehicles and renewable grid-level energy storage. By increasing the energy density of cells while keeping lifetime consistent, one can in turn decrease the cost of Li-ion cells. Much work has been focused on increasing the upper cutoff voltage of cells in order to achieve this increase in energy density. However, increasing the upper cutoff potential increases the rates of unwanted reactions in cells which can compromise lifetime.1-3 These unwanted reactions are commonly termed parasitic reactions.Another way of addressing the issue of cost is to use higher energy density materials, such as natural graphite (NG) as a negative electrode material instead of synthesized graphite, here called artificial graphite (AG). NG is known to perform poorly in some cells, which has in the past been attributed to surface exfoliation and cracking of particles.4-7 Park et al. found spherical natural graphite showed signs of particle swelling and cracking caused by mechanical strain during cycling, which could be suppressed using a carbon coating process.
5Carbon coatings on natural graphite negative electrodes have been studied in the past to avoid exfoliation from propylene carbonatecontaining electrolytes, but these coatings may decrease the energy density.4,6 AG performance reported in the literature appears to outperform natural graphite, however, few direct comparisons of artificial and natural graphite exist in the literature. Lee et al. 8 found that plasma treated AG performed better i...